Error Estimates for Space-Time Discretizations of a Rate-Independent Variational Inequality
نویسندگان
چکیده
This paper deals with error estimates for space-time discretizations in the context of evolutionary variational inequalities of rate-independent type. After introducing a general abstract evolution problem, we address a fully discrete approximation and provide a priori error estimates. The application of the abstract theory to a semilinear case is detailed. In particular, we provide explicit space-time convergence rates for classical strain gradient plasticity and the isothermal Souza– Auricchio model for shape-memory alloys.
منابع مشابه
Discontinuous Galerkin methods for solving a quasistatic contact problem
We consider the numerical solution of a nonlinear evolutionary variational inequality, arising in the study of quasistatic contact problems. We study spatially semi-discrete and fully discrete schemes for the problem with several discontinuous Galerkin discretizations in space and finite difference discretization in time. Under appropriate regularity assumptions on the solution, a unified error...
متن کاملA Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints
This paper is the second part of our work on a priori error analysis for finite element discretizations of parabolic optimal control problems. In the first part [18] problems without control constraints were considered. In this paper we derive a priori error estimates for space-time finite element discretizations of parabolic optimal control problems with pointwise inequality constraints on the...
متن کاملA Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part I: Problems Without Control Constraints
In this paper we develop a priori error analysis for Galerkin finite element discretizations of optimal control problems governed by linear parabolic equations. The space discretization of the state variable is done using usual conforming finite elements, whereas the time discretization is based on discontinuous Galerkin methods. For different types of control discretizations we provide error e...
متن کاملNumerical Investigations of an Error Bound for Reduced Basis Approximations of Non-Coercice Variational Inequalities
We consider variational inequalities with different trial and test spaces and a possibly noncoercive bilinear form. Well-posedness has been shown under general conditions that are e.g. valid for the space-time formulation of parabolic variational inequalities. Fine discretizations for such problems resolve in large scale problems and thus in long computing times. To reduce the size of these pro...
متن کاملA Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems
In this article we summarize recent results on a priori error estimates for space-time finite element discretizations of linear-quadratic parabolic optimal control problems. We consider the following three cases: problems without inequality constraints, problems with pointwise control constraints, and problems with state constraints pointwise in time. For all cases, error estimates with respect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 48 شماره
صفحات -
تاریخ انتشار 2010